Abstract

Graphene supported porous Si@C ternary composites had been synthesized by various routes and their structural, morphological and electrochemical properties were investigated. Porous Si spheres coated with carbon layer and supported by graphene have been designed to form a 3D carbon conductive network. Used as anode materials for lithium ion batteries, graphene supported porous Si@C ternary composites demonstrate excellent electrochemical performance and cycling stability. The first discharge capacity is 2184.7mAh/g at a high current density of 300mA/g. After 50 cycles, the reversible capacity is 652.4mAh/g at a current density of 300mA/g and the coulomb efficiency reaches at 98.7%. Due to their excellent electrochemical properties, graphene supported porous Si@C ternary composites can be a kind of promising anode materials for lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.