Abstract

A facile green biosynthesis method has been successfully developed to prepare gold nanoparticles (AuNPs) of various core sizes (25 ± 7 nm) using a natural biomaterial, eggshell membrane (ESM) at ambient conditions. In situ synthesis of AuNPs-immobilized ESM is conducted in a simple manner by immersing ESM in a pH 6.0 aqueous solution of HAuCl 4 without adding any reductant. The formation of AuNPs on ESM protein fibers is attributed to the reduction of Au(III) ions to Au(0) by the aldehyde moieties of the natural ESM fibers. Energy dispersive X-ray spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction unambiguously identify the presence of AuNPs on ESM. The effect of pH on the in situ synthesis of AuNPs on ESM has been investigated in detail. The pH of the gold precursor (HAuCl 4) solution can influence the formation rate, dispersion and size of AuNPs on ESM. At pH ≤3.0 and ≥7.0, no AuNPs are observed on ESM while small AuNPs are homogeneously dispersed on ESM at pH 4.0–6.0. The optimal pH for AuNPs formation on ESM is 6.0. AuNPs/ESMs are used to immobilize glucose oxidase (GO x ) for glucose biosensing. AuNPs on ESM can increase the enzyme activity of GO x . The linear response range of the glucose biosensor is 20 μM to 0.80 mM glucose with a detection limit of 17 μM (S/N = 3). The biosensor has been successfully applied to determine the glucose content in commercial glucose injections. Our work provides a very simple, non-toxic, convenient, and green route to synthesize AuNPs on ESM which is potentially useful in the biosensing field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call