Abstract
A novel rapid prototyping manufacturing technology for glass-alumina functionally gradient materials (G-A FGMs) based on the quick solidification of wax was proposed. The feature of the technology came from its layer-by-layer fabrication of the wax-glass/alumina composite layer carved in accordance with the shape of each layer of the computer designed model and in situ casting of wax into the carved area. Removal of the wax in the G-A FGMs green body was investigated based on differential scanning calorimetry (DSC) analysis. Sintering properties of the G-A FGMs were discussed. Bending strength of the G-A FGMs was measured by a three-point flexural test. Microstructures of the prepared G-A FGMs were observed using environmental scanning electron microscope (ESEM) and the compositional distribution was determined according to energy dispersive spectrum (EDS). Samples were preliminarily and respectively held at 200°C and 300°C for a long time based on the DSC analysis. The range of the optimal sintering temperature is determined to be from 710°C to 720°C and the holding time is 30min. With the increasing alumina content, the bending strength increases and the maximum bending strength is 67.5MPa. There is no delamination of the G-A FGMs via ESEM. Homogeneous distribution of the ingredient materials is confirmed through EDS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.