Abstract

Gaseous standard mixtures play an important role in characterizing and checking the applicability of new analytical procedures. In this case gaseous standard mixtures can be treated as a special kind of reference material (validation process requires the use of so-called matrix reference materials).The selection of a method of generation of gaseous standard mixtures with the desired characteristics depends on the nature of the analyte and diluent gas, as well as on the required concentration of analytes in the mixture. Recently, dynamic methods of generation of gaseous standard mixtures are becoming more and more common. These include the method based on thermal decomposition of immobilized compounds. The generation of the measured component takes place as a result of heating of a sample of solid support with chemically modified surface. During a chemical reaction initiated by sufficiently high temperature, the immobilized compound undergoes decomposition or rearrangement accompanied by the release of a specific volatile compound. Various amounts of the analyte per unit time can be obtained by adjusting the conditions of the thermal decomposition process.This article describes the possibility of varying the amount of a measured component through the adjustment of conditions of drying the solid support or of the process of chemical modification of its surface. The principle of this technique is exemplified by the generation of a mixture containing ethene as the analyte. Porous glass was used as a solid support. The proposed technique was used for the generation of gaseous standard mixtures for the calibration of a thermal desorber-gas chromatograph-flame ionization detector (TD-GC-FID) system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.