Abstract

Heterogeneous catalyst plays vital role in biomass processing due to slow rate of biological and naturally pathway processes. Solid acid sulfated zirconia (SZ) is a promising catalyst with properties that can be tuned up. Sulfated zirconia was successfully modified by 2%, 5% and 10% (wt.) Ga2O3 (xGa-SZ; x = 2, 5 and 10) via template-assisted sol-gel method. The catalysts were characterized through various method (XRD, SEM-EDS and Gas Sorption analysis) and applied on hydrolysis of cellobiose, a model compound of cellulose. Diffraction pattern showed xGa-SZ formed completely tetragonal phase whereas un-promoted SZ contains mixed phase of monoclinic and tetragonal. Acidity evaluation via gravimetric method using ammonia as probe molecule indicates the Ga2O3 promoted sulfated zirconia has larger acidity. The SEM-EDS results confirmed the presence of Gallium element on the surface of promoted xGa-SZ. Gas sorption analysis shows specific surface area is improved (83 m2∙g-1 to 123 m2∙g-1) and increased pore radii (36 Å to 56 Å). The adsorption-desorption isotherm displayed pattern of meso-porosity material. At higher T and longer time, SZ yield more glucose than xGa-SZ. However, at shorter time, 2Ga-SZ and 10Ga-SZ show better hydrolysis performance. The solid acid 10Ga- SZ shows potential performance as heterogeneous catalyst for cellobiose conversion in modest conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call