Abstract
Crystalline hollow nanospheres that are potentially applicable for optical, catalytic, and electronic devices have been generally synthesized by wet chemical approaches with multiple steps. Colloidal aerosol pyrolysis is a valuable approach producing crystallized hollow nanospheres with mass-production, minimum manufacturing steps, and less chemical usage than conventional wet chemical methods. However, conventional gas phase pyrolysis strategy has unsolved critical issues when synthesizing uniform shell-type nanoparticles including uncontrollable fracturing by sharp thermal shocks and material shrinking during crystallization. In this manuscript, the shell fracture in the gas phase continuous process is eliminated utilizing two stage pyrolysis which removes significant stresses from thermal treatment and gas emission. Advantages of solution chemistry and gas phase continuous process are combined by exploiting colloidal spray pyrolysis with two stages, therefore enabling continuous synthesis of uniform hollow spheres accompanying with organic core burning and nanoshell crystallization without fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.