Abstract

Novel organic-inorganic hybrid materials were successfully synthesized by non-hydrolytic sol-gel processing. Crack-free and thick films were produced with no remaining traces of solvents without high volume shrinkage. Adjusting the chemical composition of the materials allows the precise tailoring of the optical properties of the materials, such as optical loss, birefringence, refractive index, and thermo-optic coefficient. They can be fabricated into the step index optical waveguide structures with well-defined and reproducible refractive index differences within 0.001. The transmission performance of each waveguide channel was tested using a 10 Gbps data stream. The electrical output signal from a photodetector, connected to a wide-band oscilloscope, displays a clear 10 Gbps eye pattern. We produced a series of flexible optical waveguides from organic-inorganic hybrid materials by using soft-lithographic technique. The optical losses of the flexible waveguide arrays bent over various curvatures were measured and the transmission performance of each waveguide channel was also tested. The bending losses of a flexible waveguide array were measured and found to yield no significant loss above 2 mm diameter curvature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call