Abstract
Ferromagnetic metal fibers with a high aspect ratio (length/diameter) are attractive for use as high performance electromagnetic interference shielding materials. Ferromagnetic binary alloy fine fibers of iron-nickel, iron-cobalt and cobalt-nickel were prepared by the organic gel-thermal reduction process from the raw materials of critic acid and metal salts. These alloy fibers synthesized were featured with a diameter of about 1 um and a length as long as 1 m. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of the gel precursors were characterized by FTIR, XRD, TG/DSC and SEM. The gel spinnability largely depends on the molecular structure of metal-carboxylates formed during the gel formation. The gel consisting of linear-type structural molecules shows good spinnability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.