Abstract

In this work, the Fe3O4-carbon black filler was obtained from an in-situ coprecipitation method followed by the modification of the heptadecafluorodecyltrimethoxysilane and the Fe3O4-carbon black/poly(vinylidene fluoride) (PVDF) composites with enhanced properties were prepared by a simple solution blending-water precipitating method. The Fe3O4-carbon black distributed well in the PVDF matrix, which was confirmed by the SEM. According to the results of FTIR and WAXD, a lot of useful polar crystalline phases of PVDF formed in the Fe3O4-carbon black/PVDF composites. The electrically conductive ability, the dielectric permittivity, the dielectric loss factor, and the magnetic saturation value of the Fe3O4-carbon black/PVDF composite increased with the increasing loading amount of Fe3O4-carbon black filler. Especially, when the Fe3O4-carbon black was 5 wt.%, the dielectric permittivity of Fe3O4-carbon black/PVDF composite reached as high as 23.5 at 1000 Hz with a relatively low dielectric loss factor value of 0.38 and a magnetic saturation value of 0.64 emu/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.