Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSCs) were helpful for injury repair, but whether HUCMSCs-derived exosomes could be encapsulated in a novel nanohydrogel to regulate diabetic wound healing was unclear. Here, HUCMSCs-derived exosomes encapsulated in a bioactive scaffold composed of polyvinyl alcohol (PVA)/alginate (Alg) nanohydrogel (exo@H) was applied to wound healing of diabetic rats. Results found that exo@H could facilitate the proliferation, migration and angiogenesis of HUVECs and sped up the process of diabetic wound healing. We confirmed that exo@H contributed to the expression of the molecules related to wound healing, including SMA, SR-B1 and CD31. Besides, we also found that exo@H up-regulated VEGF level via regulating ERK1/2 pathway. These data demonstrated that exo@H significantly accelerated healing of diabetic wounds in rats by promoting angiogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.