Abstract

We describe a protocol capable of preparing an arbitrary state of two photons in several spatial modes using pairs of photons generated by spontaneous parametric down conversion, linear optical elements, and single-photon detectors or postselection. The protocol involves unitary and nonunitary transformations realizable by beam splitters and phase shifters. Nonunitary transformations are implemented by attenuation filters. The protocol contains several optimization capabilities with the goal of improving overall probability of its success. We also show how entangled two-photon states required for quantum computing with linear optics can be prepared using a very simple and feasible scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.