Abstract
The purpose of this study was to prepare a liposomal temperature-sensitive gel able to slowly release resveratrol after local intramuscular injection. The best formulation of resveratrol liposomes was based on the highest encapsulation efficiency and drug loading designed by Box-Behnken. The prepared liposomes were approximately circular, with a mean particle diameter of 161.5±0.12 nm and zeta potential of -6.9 mV. The optimized liposomes were dispersed in a polymer gel (PLGA-PEG-PLGA) for preparation of an in situ-formed gel at 35±2°C. In vitro release of the prepared liposome temperature-sensitive gel was studied and compared with ordinary drug-releasing gels, revealing a significantly longer drug release time. Finally, a rat sciatic nerve injury model was used to evaluate the pharmacological activity of the liposome temperature-sensitive gels for the repair of damaged nerves. The results indicate that the gel was able to promote recovery of damaged nerves.
Highlights
The peripheral nervous system refers to all nerves other than the brain and spinal cord, including the ganglia, neural stem, plexus, and nerve terminals
The results demonstrate that the RSV-Lips-Gel high-dose group had significantly increased Sciatic nerve functional index (SFI) and reduced paw withdrawal from heat (PWTL) values compared with the model and free RSV groups, indicating that RSV-Lips-Gel assisted in the recovery of sciatic nerve function
Since encapsulated RSV should pass through the liposome bilayer, diffuse from the gel, the RSV-LipsGel demonstrated stable drug release in vitro without significant initial burst compared with the RSV-loaded hydrogel (RSV-Gel)
Summary
The peripheral nervous system refers to all nerves other than the brain and spinal cord, including the ganglia, neural stem, plexus, and nerve terminals. Depending on the part of the central nervous system to which a nerve connects, the peripheral nervous system is categorized as either cranial or spinal, referring to its connection to the brain or spinal cord, respectively [1, 2]. Peripheral nerve injuries are commonly observed in the clinic, often caused by fractures, mechanical trauma, or joint dislocation [3]. Injury to peripheral nerves is accompanied by a series of neurological lesions, which can cause the body to lose some or all of its motor, sensory, or autonomic function. Adequate functional recovery after peripheral nerve injury remains a clinical challenge. Over the past ten years, use of microsurgery to treat damaged peripheral nerves has often failed to achieve the expected results due to the complex microenvironment in which the damaged nerves exist
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.