Abstract

Electrospinning is a simple and versatile process to produce polymer nanofibers, which are useful for ultrafine particle filtration. In this study, a polyurethane filter with an average fiber diameter of 150–250 nm was prepared through the electrospinning process and its filtration characteristics were investigated. We found that the electrospun fiber diameter was highly dependent on the polyurethane concentration, electric field, and tip-to-collector distance. As the polyurethane concentration, electric field, and tip-to-collector distance under the same electric field increased, the fiber diameter increased. We also found that the produced filter media had a minimum collection efficiency at particles sizes from 80 to 100 nm, which implies an electrostatic attraction between the filter and the test particles. Furthermore, we observed that interception was a predominant collection mechanism at Peclet numbers higher than 10 in nanofiber filtration for ultrafine particles. Implications: A polyurethane nanofiber filter with excellent mechanical properties was prepared, and the effect of operating conditions on fiber morphology was examined. The filter fabricated by an electrospinning process is charged and has high filtration efficiency due to electrostatic force. Therefore, it can be a good alternative to control hazardous ultrafine particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.