Abstract
As an emerging source for liquid biopsy, exosomes hold significant promise for clinical diagnosis. However, commonly used exosome isolation methods (e.g., ultracentrifugation) suffer from low throughput for a large number of clinical samples. Herein, a dysprosium-metal organic framework was synthesized and doped with nanofibers by electrospinning for efficient capture of exosomes from body fluid. With the integration of multichannel of pipet or robot automatic workstation, high throughput exosome isolation can be achieved with clinical samples with high reproducibility. To evaluate the clinical value of the developed method, urinary exosomes were enriched from 34 liver disease samples of different stages for the profiling of metabolites by mass spectrometry. The results showed that HCC, cirrhosis, and healthy controls can be significantly differentiated by the Random Forest classification model. The dysprosium-metal organic framework has promising applications in exosome-based liquid biopsy for large-scale clinical disease diagnosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.