Abstract

Durable superhydrophobic surface on cotton fabrics has been successfully prepared by sol–gel method. Cellulose fabric was first coated with silica sol prepared with water glass and citric acid as the acidic catalyst. The silica coated fabric was then padded with hydrolyzed hexadecyltrimethoxysilane afterwards obtaining low surface energy. Water contact angle and hydrostatic pressure were used to characterize superhydrophobicity and washing durability. Scanning electron microscopy was used to characterize the surface morphology changes after certain washing times. All results showed good durable hydrophobicity on cellulose fabrics. In addition, the influence of citric acid and sodium hypophosphite (NaH2PO2) on the durability of hydrophobicity was also investigated. The durability of treated cotton improved with the increase of concentration of citric acid in the presence of NaH2PO2. It could be concluded that citric acid acted as multi-functional heterogeneous grafting chemicals to improve washing durability of hydrophobicity by forming the ester bonds between cotton fabric and silica sol and improved the durability of hydrophobicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.