Abstract
Rapid self-healing of micro-configurations is an effective strategy to enhance the durability of superhydrophobic surfaces, however, this property is challenging to achieve. Here, a durable superhydrophobic coating with a precisely targeted self-healing ability to repair its’ dual structure was developed by spray-coating a polyimine film with a mixture of novel fluorinated epoxy resin and Fe3O4@SiO2–NH2 nanoparticles. The superhydrophobic surface can heal both the broken morphology and wettability through a short irradiation process on account of its local photothermal conversion ability and dynamic imine bond, and can maintain the static water contact angle at a value higher than 159° even after six damage/healing cycles. Furthermore, superhydrophobic coatings can be controllably degraded in three ways. Additionally, because of the robust epoxy resin protection, the surface can withstand sixteen times the dynamic impact and still maintain a WCA greater than 150°. This preparation strategy may aid the fabrication of durable superhydrophobic surfaces for various practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.