Abstract

Sea squirts, a tunicate, are found in all oceans and can foul marine ports and aquaculture, mainly affecting shipping and biodiversity. In this study, cellulose was extracted from sea squirts, and its hydrophilic properties were improved by substituting the hydrogen ions of the cellulose –OH with dopamine. The modified cellulose was used to prepare a hydrogel for use as a dust-fixing agent (CDP) to reduce air pollution caused by dust. After response surface method optimization, the proportions of binder, water-retaining agent, wetting agent, and antifreeze in CDP were 0.97, 1.44, 0.23, and 6.32%, respectively. This composition improved the wetting ability and permeability of CDP on particle surfaces. CDP exhibited good water retention at -11–50 °C. CDP reduced the wind erosion rate of dust at a wind speed of 12 m/s to 1.18%. The molecular dynamics method was used to analyze the wetting process and mechanism of CDP, revealing that hydrogen bonds were the dominant force at the solid-liquid interface. The adsorption of CDP onto the surface of coal increased the number of hydrophilic points. Water molecules were adsorbed on these hydrophilic points through hydrogen bonding, improving the binding energy between the solid and liquid interfaces. The application of ascidian cellulose in dust control makes full use of the biological value of ascidians, promoting sustainable development of the global biological economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.