Abstract

In biomass pyrolysis engineering, it is important to develop an industrial catalyst with efficient activity, high selectivity, and a long working life. Dolomite-based porous ceramics were considered in this work. The influence of total corn flour content on the open porosity, compressive strength, and thermal conductivity of dolomite-based porous ceramics was investigated. In order to enhance the catalytic activity, dolomite-based porous ceramics were impregnated with an Al2(SO4)3 solution to load the Al2O3 catalyst. Catalytic fast pyrolysis experiments using corn stalk were conducted with the aforementioned catalyst. The bio-oil yield increased as the open porosity of the dolomite-based porous ceramics increased. The pyrolysis bio-oil yield decreased as the Al2(SO4)3 concentration increased. The phenol content in the bio-oil increased as the Al2O3 load increased. Aluminum oxide not only promoted the formation of phenols in the bio-oil, but it also promoted the conversion of phenols, e.g., 4-ethylphenol and 2, 6-dimethoxy-phenol. The results demonstrated that Al2O3 was beneficial for the formation of phenols during pyrolysis. The results detailing the preparation of Al2O3 loaded dolomite-based porous ceramics can provide a reference for large-scale biomass pyrolysis projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.