Abstract
Assemblies are widely used in biomedicine, batteries, functional coatings, Pickering emulsifiers, hydrogels, and luminescent materials. Polymerization-induced self-assembly (PISA) is a method for efficiently preparing particles, mainly initiated thermally. However, thermally initiated PISA usually requires a significant amount of time and energy. Here, we demonstrate the preparation of nano-assemblies with controllable morphologies and size using ultrasound (20 kHz) assisted ethanol-phase RAFT-PISA in three hours. Using poly (N, N-dimethylaminoethyl methacrylate) as the macromolecular reversible addition-fragmentation chain transfer agent (PDMA-CTA) to control the nucleating monomer benzyl methacrylate (BzMA), we obtained nano-assemblies with different morphologies. With the length of hydrophobic PBzMA block growth, the morphologies of the assemblies at 15 wt% solid content changed from spheres to vesicles, and finally to lamellae; the morphologies of the assemblies at 30 wt% changed from spheres micelles to short worms, then vesicles, and finally to large compound vesicles. With the same targeted degree of polymerization, nano-assemblies having a 30 wt% solid content display a more evolved morphology. The input of ultrasonic energy makes the system have higher surface free energy, results the mass fraction interval of solventphilic blocks (fhydrophilic) corresponding to the formation of spherical micelles is expanded from fhydrophilic > 45 % to fhydrophilic > 31 % under ultrasound and the fhydrophilic required to form worms, vesicles, and large composite vesicles decreases in turn. It is worth noting that the fhydrophilic interval of worms prepared by ultrasonics assisted PISA gets larger. Overall, the highly green, externally-regulatable and fast method of ultrasonics assisted PISA can be extended to vastly different diblock copolymers, for a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.