Abstract

AbstractDelafossite CuYO2 and Ca doped CuYO2 were prepared by thermal decomposition of a metal-citric acid complex. The starting solution consisted of Cu acetate, Y acetate and Ca acetate as the raw materials. Citric acid was used as the chelating agent, and acetic acid and distilled water were mixed as a solvent. The starting solutions were heated at 723 K for 5 h after drying at 353 K. The obtained powders were amorphous and single phase of orthorhombic Cu2Y2O5 was obtained by heat-treated the amorphous powder at a temperature range between 1073 and 1373 K for 3 h in air. Furthermore, Heat-treating the obtained orthorhombic Cu2Y2O5 at above 1373 K in air caused it to decompose into Y2O3, CuO and Cu2O. On the other hand, the sample powder prepared from a starting solution without citric acid, i.e., single phase of orthorhombic Cu2Y2O5 could not be obtained under the same synthesis conditions as that for a solution with citric acid. We were able to obtain delafossite CuYO2 and Ca doped CuYO2 from orthorhombic Cu2Y2O5 under a low O2 pressure atmosphere at above 1223 K. The obtained delafossite CuYO2 composed hexagonal and rhombohedral phases. The color of the CuYO2 powder was light brown and that of Ca-doped CuYO2 was light green. Diffraction peaks in the XRD pattern were slightly shifted by doping Ca for CuYO2, and these peaks shifted toward to a high diffraction angle with an increasing amount of doped Ca. From these results, we concluded that Ca doped delafossite CuYO2 could be obtained by thermal decomposition of a metal-citric acid complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.