Abstract

Particle-cell interactions, such as cellular uptake, vary depending on the particle size, shape, and surface properties. By dynamic control of the physical properties of particles, microparticle-cell interactions can intentionally be altered. Particle degradability is also necessary for their application in the body. In this study, we aimed to prepare degradable core-corona-type particles that are deformed near the body temperature and investigated particle shape-dependent cellular uptake. Degradable and transformable particles consisting of poly(2-methylene-1,3-dioxepane)-co-poly(ethylene glycol) with three-armed poly(ε-caprolactone) (PCL) were prepared. The particle melting point was controlled by the chain length of the three-armed PCL. Particle degradation occurred under both acidic and alkaline conditions via ester group hydrolysis in the polymer backbones. The rod-shaped microparticles prepared by uniaxial stretching at a temperature above the melting point of the core showed less uptake into macrophages than did the spherical microparticles. Therefore, the degradable transformable particles enable macrophage interaction control via stimuli-regulated particle shapes and are expected to be applied as drug delivery carriers that can be decomposed and excreted from the body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call