Abstract

Carbon aerogels were prepared from mixed cresol (Cm) and formaldehyde (F) via the sol–gel process followed by drying at ambient pressure and carbonization. The inexpensive feedstock of mixed cresol and the simple drying process could be as an alternative economical route to the classical resorcinol–formaldehyde synthesis process. In our process, organic precursor gels were synthesized via polycondensation of cresol with formaldehyde in an aqueous alkaline (NaOH) solution. After gelation the solvent was removed via drying at ambient pressure to obtain organic aerogels that exhibit a drying shrinkage below 5% (linear). Upon carbonization of the organic aerogels at 1173K, monolithic carbon aerogels (denoted as CmF carbon aerogels) can be produced. Nitrogen adsorption results showed that the CmF carbon aerogels have abundant mesopores and micropores with a dominant pore diameter of 25–40nm. An increase of the BET surface area and a modification of the pore size distribution of CmF can be realized by a CO2 activation. The images of scanning electron microscopy (SEM) indicated that the microstructure of carbon aerogels can be effectively controlled and tailored by varying the synthetic conditions during the initial sol–gel process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call