Abstract
Submicron-sized cationic polystyrene shell particles with active ester groups were effectively self-assembled on hydrophobic surfaces of cross-linked polystyrene (PST) particles, uncharged core particles with ca. 8.5-µm diameter in aqueous systems. The hydrophobic interactions between the shell particles and core particles play a key role in heterocoagulation. The resulting heterocoagulates were highly physically stable in water, and the morphology was controlled by several factors including the solid content of latex, self-assembling time, and electrolyte concentration. Composite polymer particles with a core–shell structure were successfully obtained from the heterocoagulates by heat treatment for 3 h at a temperature above the glass transition temperature (T g) of the cationic polymer shell particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.