Abstract

Herein, fabrication of hollow fibers made of polyelectrolyte multilayers is reported. Silica submicrometer-scale fibers were fabricated by electrospinning and layer by layer deposition of polyelectrolytes were performed to coat silica fibers with polyelectrolyte multilayers, which were prepared by consecutive deposition of poly(ethyleneimine) and poly(styrene sulfonate sodium salt)/sodium dodecyl sulfate onto the surface of the silica fibers. In order to obtain hollow fibers, the core removal was carried out by introducing the core-shell fibers to a hydrofluoric acid solution. The hollow fibers were stable in hydrofluoric acid solution and displayed pH-dependent structural changes. SEM microscopy indicated the formation of the glass fibers and the fibers coated with polyelectrolyte multilayers (Silica—polyelectrolyte multilayers (PEM) fibers). The diameter of the core-shell fibers was increased after layer-by-layer coating. ATR-FTIR was performed for characterization of the glass fibers before and after layer-by-layer coating as well as after selective core removal. IR spectrum of the Silica-PEM fibers indicates C-H stretching modes of saturated hydrocarbons, confirming multilayers formation. Core removal was also confirmed by IR spectroscopy as Si-O-Si band disappears for the IR spectrum of the fibers after core-removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call