Abstract
Purpose This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding performance under sunlight and infrared irradiation. Design/methodology/approach With the help of anionic and cationic polyelectrolytes, the PGT composite pigment was prepared using a layer-by-layer assembly method under wet ball milling. Based on the light reflectance properties and color performance tested by ultraviolet-visible-NIR spectrophotometer and colorimeter, the preparation conditions were optimized and the properties of PGT pigment with different assembly layers (PGT-1, PGT-3, PGT-5 and PGT-7) were compared. In addition, their heat-shielding performance was evaluated and compared by temperature rise value for their coating under sunlight and infrared irradiation. Findings The PGT pigment had a core/shell structure, and the PG thickness increased with the self-assembly layers, which made the PGT-3 and PGT-7 pigment show higher color purity and saturation than PGT-1 pigment. In addition, the PGT-3 and PGT-7 pigment showed 11%–16% lower light reflectance in the visible region. However, their light reflectance in the NIR region was similar. Under infrared irradiation the PGT-5 and PGT-7 pigment coating showed 1.1°C–3.4°C and 1.3°C–4.7°C lower temperature rise value than PGT-1 pigment coating and physical mixture pigment coating, respectively. And under sunlight the PGT-3 pigment coating showed 1.5–2.6°C lower temperature rise value than the physical mixture pigment coating. Originality/value The layer-by-layer assembling makes the core/shell PGT composite pigment possess low visible light reflectance, high NIR reflectance and good heat-shielding performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.