Abstract

Rich biological information in sweat provides great potential for health monitoring and management. However, due to the complexity of sweat, the development of environmentally friendly green electronic products is of great significance to the construction of ecological civilization. This study utilized a simple combination of polystyrene sulfonate sodium (PSS) and filter paper (FP) to prepare cellulose materials coated with conductive polymers, developing an electrochemical sensor based on the modified materials. The mechanical and electrochemical properties of the fabricated PSS/FP membrane were optimized by adjusting the feeding dosage of PSS. The realized PSS/FP composite containing 7% PSS displayed good conductivity (9.1 × 10-2 S/m), reducing electric resistance by 99.2% compared with the original FP membrane (6.7 × 10-4 S/m). The stable current of the membrane in simulated sweat under different pH environments is highly correlated with the pH values. Additionally, when the membrane is exposed to simulated sweat with varying ion concentrations, the current signal changes in real time with the concentration variations. The response time averages around 0.3 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.