Abstract
Alkylation at N-1 of the NADP+ adenine ring with 3,4-epoxybutanoic acid gave 1-(2-hydroxy-3-carboxypropyl)-NADP+. Enzymic reduction of the latter, followed by alkaline Dimroth rearrangement and enzymic reoxidation, gave N6-(2-hydroxy-3-carboxypropyl)-NADP+. On the other hand, bromination at C-8 of the NADP+ adenine ring, followed by reaction with the disodium salt of 3-mercaptroproionic acid, gave 8-(2-carboxyethylthio)-NADP+. Carbodimide coupling of the three carboxylic NADP+ derivatives to polyethyleneimine afforded the corresponding macromolecular NADP+ analogues. The carboxylic and the polyethyleneimine derivatives synthesized have been shown to be co-enzymically active with yeast glucose-6-phosphate dehydrogenase, liver glutamate dehydrogenase and yeast aldehyde dehydrogenase. The degree of efficiency relative to NADP+ with the three enzymes ranged from 17% to 100% for the carboxylic derivatives and from 1% to 36% for the polyethyleneimine analogues. On comparing the efficiences with the three enzymes of the N-1 derivatives to the one of the corresponding N6 anc C-8 analogues, the order of activity was N-1 greater than N6 greater C-8, except in the case of the carboxylic compounds with glutamate dehydrogenase, where this order was inverted. None of these modified cofactors were active with pig heart isocitrate dehydrogenase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.