Abstract
Methyl-coenzyme M reductase (MCR) is the key enzyme in pathways for the formation and anaerobic oxidation of methane. As methane is a potent greenhouse gas and biofuel, investigations of MCR catalysis and maturation are of interest for the development of both methanogenesis inhibitors and natural gas conversion strategies. The activity of MCR is dependent on a unique, nickel-containing coenzyme F430, the most highly reduced tetrapyrrole found in nature. Coenzyme F430 is biosynthesized from sirohydrochlorin in four steps catalyzed by the CfbABCDE enzymes. Here, methods for the expression and purification of the coenzyme F430 biosynthesis enzymes are described along with conditions for the synthesis and purification of biosynthetic intermediates on the milligram scale from commercially available porphobilinogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.