Abstract

A novel cobalt-tetraphenylporphyrin/reduced graphene oxide (CoTPP/RGO) nanocomposite was prepared by a π–π stacking interaction and characterized by ultraviolet–visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The CoTPP/RGO nanocomposite exhibited high electrocatalytic activity both for oxidation and reduction of H2O2. The current response was linear to H2O2 concentration with the concentration range from 1.0×10−7 to 2.4×10−3molL−1 (R=0.998) at the reductive potential of −0.20V and from 1.0×10−7 to 4.6×10−4molL−1 (R=0.996) at the oxidative potential of +0.50V. The H2O2 biosensor showed good anti-interfering ability towards oxidative interferences at the oxidative potential of +0.50V and good anti-interfering ability towards reductive interferences at the reductive potential of −0.20V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.