Abstract

Iota toxin, a type of A-B toxin produced by Clostridium perfringens, comprises an enzymatic component (Ia) and a membrane-binding component (Ib). The translocation of Ia to the target cell via the pore formed by Ib allows it to function as an ADP-ribosyltransferase that inhibits actin polymerization in the host cell. The structure of Ia-bound Ib-pore has been determined using cryo-electron microscopy (cryo-EM), thereby elucidating the mechanism of the initial Ia translocation; however, open questions regarding Ia translocation still exist. In this chapter, we describe a new method of preparing Ia-bound Ib-pore complex samples for structural analysis at high resolution using cryo-EM. This method is different from previously reported methods for other A-B toxins. Consequently, it produces Ib-pore with two different states with short and long membrane-spanning β-barrel stem. We expect that this method will be useful in functional and structural studies of iota toxin and other binary toxins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call