Abstract

In order to improve oxidation/erosion resistance of the T/P 24 steel components used in advanced power plants, chrome carbide coatings were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) on T/P24 at 700-1000°C. Microstructure and phase composition of the obtained surface layers were characterized employing X-ray diffraction and scanning electron microscopy with chemical analysis (SEM/EDS). Results showed that homogenous smooth chrome carbide coatings can be formed on the substrate. Phase composition of the prepared coatings are differs with PIRAC temperatures. Prepared at lower temperatures or short times treatment, Cr23C6, Cr7C3 and Cr3C2 can be detected in the coatings. While, at higher temperatures or longer treatment times, Cr23C6 is subtotal phase of the produced coating. Moreover, the lower the PIRAC temperature is, the more of Cr7C3 and Cr3C2 are. Thermodynamics calculation based on Gibbs free energy is applied to explain phase composition difference of the coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call