7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.memsci.2010.07.046
Copy DOIJournal: Journal of Membrane Science | Publication Date: Aug 3, 2010 |
Citations: 146 |
Chloromethylated poly(phthalazinone ether ketone) (CMPPEK) was prepared from poly(phthalazinone ether ketone), with chloromethyl methyl ether (CME) as the chlromethylating reagent and concentrated sulfuric acid as the solvent. The effects of CME quantity, reaction temperature, and reaction time on degree of chloromethylation (DCM) were investigated. CMPPEK with DCM ranging from 0.73 to 2.32 mmol g −1 were obtained. CMPPEK were characterized with 1H NMR and TGA. CMPPEK membranes were prepared from CMPPEK/ N-methyl-2-pyrrolidinone casting solutions. Quaternized poly(phthalazinone ether ketone) (QAPPEK) anion exchange membranes were prepared from CMPPEK membranes with different DCM. The ion exchange capacity (IEC) and water content (Wc) of QAPPEK membranes were studied. QAPPEK membranes exhibited IEC ranging from 0.70 to 2.04 mmol g −1 and Wc ranging from 12.9 to 52.3%. IEC and Wc of QAPPEK increased with an increase in DCM of CMPPEK. The vanadium ion permeability of QAPPEK membranes was much lower than that of Nafion117 membrane. The performance of vanadium redox flow battery (VRB) single cell with QAPPEK membranes was investigated. Compare to VRB cell with Nafion117 membrane, the VRB single cell with QAPPEK membranes exhibited higher columbic efficiency. The results show that QAPPEK membranes could be promising anion exchange membranes for VRB applications.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.