Abstract

Chitosan (CS), a cationic polysaccharide, offers great advantages for ionic interactions with negatively charged species such as sodium tripolyphosphate (STPP) leading to the formation of biocompatible crosslinked chitosan nanoparticles In the present work, an attempt has been made to systematically study the following factors influencing the ionotropic gelation of chitosan with STPP to produce CS nanoparticles: effect of pH of solution, CS concentration, STPP concentration and CS/STPP ratio. The results show that with the increase in CS concentration, the yield of the nanoparticle decreases whereas size increases. The mean size of the prepared nanoparticles varied between 120 to 720 nm and zeta potential between +14 mV to +53 mV. Nanoparticle size and yield was found to be strongly dependent on solution pH. Nanoparticle size decreased with increase in solution pH from 4 to 5 and yield was found to be maximum at pH = 5. With increase in STPP concentration, the size and yield of the nanoparticle increased. The potential of CS nanoparticles to trap amoxicillin trihydrate, taken as the model drug, was also studied. The maximum drug loading capacity was found to be 35% at a solution pH = 5 for 0.2% CS and 0.086% STPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call