Abstract

The removal of impurity Al(III) from rare earth ion solution by selective adsorption method was one of the challenging tasks. Herein, calcination and acid dissolution treatment were used to construct the pore structure for the halloysite substrate (Hal-650-H) and provide conditions for the formation of the chitosan mesoporous membrane to prepare composite (Hal-H-2CS). The selective adsorption properties and mechanism of the Hal-H-2CS for Al(III) in the rare earth ion solution were studied. The results showed that the formation of mesoporous structures for chitosan provided abundant sites for the adsorption of Al(III). Hal-H-2CS showed remarkable selective adsorption properties for Al(III) in a wide pH range and the binary mixtures with high content of Al(III) or La(III). The maximum adsorption capacity of Al(III) was 106 mg/g, while the adsorption capacity of La(III) was only 1.41 mg/g at pH 4.0. In addition, the Hal-H-2CS exhibited excellent regeneration and structural stability. The remarkable selective properties of Hal-H-2CS was achieved by the synergistic effect between chitosan mesoporous membrane and Hal-650-H, the main adsorption sites were the OH, NH2, CONH2 of chitosan and the oxygen sites of the Hal-650-H. This work provides a new strategy for the design and preparation of outstanding selective adsorbent for Al(III).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.