Abstract

Laser-ablated Ti atoms react with CH(3)F upon condensation with excess argon to form primarily CH(3)TiF and (CH(3))(2)TiF(2). Irradiation in the UV region promotes alpha-hydrogen rearrangement of CH(3)TiF to CH(2)=TiHF and increases the yield of (CH(3))(2)TiF(2). Annealing to allow diffusion and reaction of more CH(3)F markedly increases the yield of (CH(3))(2)TiF(2). This shows that the CH(3)TiF + CH(3)F reaction is spontaneous and that triplet state CH(3)TiF is an extremely reactive molecule. B3LYP calculations are extremely effective in predicting vibrational frequencies and isotopic shifts for CH(3)TiF and (CH(3))(2)TiF(2) and thus in confirming their identification from matrix infrared spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.