Abstract

The development of green and sustainable routes to liberate crystalline cellulose microfibrils from plant cell walls is of utmost importance to enable development of the large-scale production of sustainable nanomaterials based on renewable resources. The catalytic oxidation of cellulose using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) under aqueous conditions at room temperature is a position-selective and efficient chemical modification. TEMPO-mediated oxidation of plant cellulose fibers, followed by gentle mechanical disintegration of the oxidized celluloses in water, results in the formation of TEMPO-oxidized cellulose nanofibers (TOCNs) with homogeneous widths (∼3 nm) and high aspect ratios. TOCNs are characteristic bio-based materials with high tensile strengths and elastic moduli. Sodium carboxylate groups are densely present on the crystalline TOCN surfaces and can undergo counterion exchange from sodium to other metal or alkylammonium ions under aqueous conditions. The hydrophilic/hydrophobic, stable/biodegradable, super deodorant, catalytic, and other functionalities of TOCNs can be controlled through counterion exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call