Abstract

Ce-MnOx composite oxide catalysts with different proportions were prepared using the coprecipitation method, and the CO-removal ability of the catalysts with the tested temperature range of 60-140 °C was investigated systematically. The effect of Ce and Mn ratios on the catalytic oxidation performance of CO was investigated using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), H2 temperature programmed reduction (H2-TPR), CO-temperature programmed desorption (CO-TPD), and in situ infrared spectra. The experimental results reveal that under the same test conditions, the CO conversion rate of pure Mn3O4 reaches 95.4% at 170 °C. Additionally, at 140 °C, the Ce-MnOx series composite oxide catalyst converts CO at a rate of over 96%, outperforming single-phase Mn3O4 in terms of catalytic performance. With the decrement in Ce content, the performance of Ce-MnOx series composite oxide catalysts first increase and then decrease. The Ce MnOx catalyst behaves best when Ce:Mn = 1:1, with a CO conversion rate of 99.96% at 140 °C and 91.98% at 100 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.