Abstract

The CdS/TiO 2 NTs nanocomposite was prepared through ion-exchange and precipitation reactions. The nanostructure properties of the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-visible absorption spectra (DRUVAS), fluorescence emission spectra (FES) and X-ray fluorescence analyzer (XRF). SEM results revealed that the lamellar sodium trititanate originating from the TiO 2 particles individually curled to form the sodium trititanate nanotubes by self-assembled mechanism. The results of XRD, TEM and DRUVAS demonstrated that hexagonal phase CdS with about 8 nm particle size were homogeneously loaded on the surface of anatase TiO 2 NTs and the absorption edge of the composite was extended to the visible region. The CdS/TiO 2 NTs composite exhibited the highest activity of hydrogen production (1708 μL/g) by photocatalytic water decomposition in comparison with TiO 2 NTs and TiO 2 powder under visible light irradiation (λ > 400 nm) for 6 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.