Abstract

In this study, bare CdS nanoparticles (NPs) were prepared by solvothermal method using CdCl2(3-methylbenzaldehyde thiosemicarbazone)2 as a single-source molecular precursor in the presence of ethylene glycol. Further, these CdS NPs were used for the preparation of binary (CdS–TiO2) and ternary (CdS–TiO2/Pd) heterogeneous nanocatalysts. Characterization of the as-prepared nanocatalysts has been carried out using different techniques such as powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy, and photoluminescence studies. The peak observed at 2θ = 39.5° in XRD confirms the successful doping of noble metal (Pd) on the surface of CdS–TiO2 nanocatalyst, which is well supported by Raman analysis. From FESEM and TEM analyses, mixed morphology has been observed and elemental composition was confirmed by energy-dispersive X-ray spectroscopy elemental mapping. Furthermore, the as-prepared bare CdS NPs, binary CdS–TiO2, and ternary CdS–TiO2/Pd heterogeneous nanocatalysts were used for the reductive transformation of various nitroaromatic compounds to their corresponding aromatic amines at room temperature. It has been observed that among all of the catalysts, ternary CdS–TiO2/Pd heterogeneous nanocatalyst has excellent catalytic property to reduce all nitroaromatic compounds in very short time span.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call