Abstract
ABSTRACTA series of novel cationic flocculants are designed and synthesized successfully by grafting two monomers onto the collagen backbone, namely acrylamide (AM) and 2‐methacryloyloxyethyltrimethyl ammonium chloride (DMC). Apparently, these effective grafting modifications are well demonstrated by adopting FTIR and H1 NMR measurements, which could be used to estimate grafting ratios of corresponding monomers approximately. Additionally, significant improvements in positive charge densities and amorphous aggregation structures are also definitely confirmed by Zeta and XRD measurements, respectively. Moreover, thermogravimetric analysis clearly proves the formation of cationic branched chain architectures, whose maximum thermal degradation temperature would significantly decrease with the introduction of AM. In addition, much more porous and rougher surface structures could be visibly observed after successful grafting modifications. Furthermore, when the feeding weight ratio between collagen and DMC is controlled at 1:3, or the equal amounts of AM and DMC are introduced meanwhile the mass ratio between collagen and mixed monomers (DMC + AM) is fixed at 1:4, the samples acquired could both perform the best in decolorizing the model wastewater containing methyl orange (MO) dyes in their groups, and hereby, a corresponding flocculation mechanism is also proposed based on the structural analysis of the formed flocs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45363.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.