Abstract

Gypsum (CaSO4·2H2O) with active catalytic performance was prepared from phosphorous rock through an improved clean wet process. The impact of the preparation conditions was extensively analyzed to identify the statistical significance toward the compositions of the prepared gypsum and catalytic performances during the transesterification reaction. The prepared catalyst predominantly contains CaSO4 (93%) with contaminations of silica (5%), P2O5 (0.25%), Fe2O3 (0.52%), Al2O3 (0.24%), and TiO2 (0.12%). Heavy-metal oxides, that is, Cr2O3, PbO, and CuO, were not detected from the prepared catalyst. The contaminants in gypsum are in the form of complicated composites such as SiO2, (Na2, K2)SiF6, MgF2, AlF3, Ca5(PO4)3F, and Ca3(PO4)2. The significant operational parameters, namely, the crystallization temperature and duration toward the catalytic performance, were identified by ANOVA. The Brönsted acidic sites from the ionic S and O, which might be in the form of S–⃛O or S═O as the surface functional groups, attribute to transesterification catalysis. The theoretical simulation suggests that different ionic sulfates might co-exist on the surface of crystallite gypsum. The transport of reagents to the surface of catalytic sites also plays an important role under the investigated experimental conditions. The reusability study indicates an approximate 10% deactivation after the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.