Abstract

Extracellular matrix (ECM) derived by tissue decellularization has applications as a tissue engineering scaffold and for support of cellular regeneration. Myocardial ECM from animals has been produced by whole-organ perfusion or immersion processes, but methods for preparation of human myocardial ECM for therapy and research have not been compared in detail, yet. We analyzed the impact of decellularization processes on human myocardial ECM, and tested its ability to serve as a scaffold for cell seeding. Sodium dodecyl sulfate (SDS)-based decellularization, but not treatments based on Triton X-100, deoxycholate or hypo/hypertonic incubations, removed cells satisfactorily, and incubation with fetal bovine serum (FBS) eliminated residual DNA. ECM architecture was best preserved by a protocol consisting of 2 h lysis, 6 h SDS, and 3 h FBS, but age and pathology of the donor tissue are highly important for producing reproducible, high-quality scaffolds. We also studied ECM repopulation with mesenchymal stem cells (CB-MSC), cardiomyocytes derived from induced pluripotent stem cells (iPS-CM), and na€ıve neonatal mouse cardiomyocytes. Cells attached to the matrix and proliferated and displayed higher viability than in standard culture. We conclude that human cardiac ECM sheets may be suitable scaffold for cell-matrix interaction studies and as a biomaterial for tissue regeneration and engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.