Abstract

Carbon fiber reinforced silicon-substituted hydroxyapatite (C(f)/Si-HA) bone cements composites were prepared by microwave chemical reaction with a later solidification process using carbamide, calcium nitrate, ammonium dibasic phosphate and ethyl silicate as raw materials, and buffer solutions of acrylic acid and itaconic acid as gelling agent. The influences of carbon fibers volume fraction, contents of coupling agents, sodium citrate contents on the flexural strength of silicon- substituted hydroxyapatite bone cements composites were particularly investigated. The phase composition, microstructures and flexural strength of the composites were characterized by X-ray diffraction, scanning electron microscope and universal testing machine analyses. And the flexural strength of the prepared composites reach the maximum value 41.5MPa when the carbon fibers volume fraction, silane agent KH550 and sodium citrate mass fraction arrive to 3.0, 0.6 and 3.0%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.