Abstract

Carbon aerogel microspheres were successfully prepared using a simple-injection emulsification method, employing sol–gel polycondensation of a resorcinol–formaldehyde solution containing sodium carbonate as a catalyst. This process was followed by solvent exchange using acetone, supercritical drying with carbon dioxide and carbonization in a nitrogen atmosphere. The effect of curing time before starting injection, injection rate and agitation rate of continuous phase on the particle size and the porous properties of the carbon aerogel microspheres was investigated. Adsorption of phenol by using the prepared carbon aerogel microspheres was also examined. The diameter of carbon aerogel microspheres was controlled in the range of 20–55μm by varying injection rate and agitation rate. The mean diameter of carbon aerogel microspheres decreased with increasing the injection rate and the agitation rate, whereas their mean diameter was independent of the curing time. The BET surface area and total pore volume of carbon aerogel microspheres increased with increasing the curing time. In contrast, their BET surface area and total pore volume decreased with increasing the injection rate and the agitation rate. The BET surface area, total pore volume, mesopore volume and micropore volume of the carbon aerogel microspheres with a mean diameter of 45μm were 903m2/g, 0.60cm3/g, 0.31cm3/g and 0.27cm3/g, respectively. The phenol-adsorption capacity of these carbon aerogel microspheres was 29.3mg phenol/g adsorbent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call