Abstract

Hexagonal boron nitride and silicone rubber (h-BN/SR) composites were prepared by the mechanical stirring method, and their crystal morphology, chemical structure, thermal properties, and compression stress–strain performance were investigated. The experimental results suggest that silicone rubber combined with h-BN exhibits better thermal conductivity and mechanical properties. When the proportion of h-BN is 30 wt%, the thermal conductivity of the h-BN/SR composite material is 0.58 W/m∙K, which is 3.4 times that of pure silicone rubber. At the same time, the compressive strength of h-BN/SR is 4.27 MPa, which is 6.7 times that of pure silicone rubber. Furthermore, the finite element model was employed to numerically analyze the thermal behavior of a battery with a h-BN/SR composite as the thermal interface material. The analytical results show that the highest temperature of the battery decreased when using h-BN/SR as the thermal interface material in the battery thermal management system. The h-BN/SR composite can thus effectively improve the safety properties of batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.