Abstract

Blue-emitting Eu 2+-doped CaMgSi 2O 6 phosphors were prepared by the reverse micelle method. The resultant particles were nanocrystalline with a grain size of about <300 nm and exhibited a characteristic blue emission spectrum centered at 445 nm induced by the oxygen coordinated Eu 2+ ions. By using the corresponding nanophosphors followed by the formation of a uniform phosphor layer, we have demonstrated the mini-sized transparent plasma-discharge panels and investigated their luminance characteristics. Phosphor coated panel is properly transparent, ≥65%, at the visible wavelength region and illuminates a characteristic blue emission under Ne/Xe plasma discharge conditions. Thus, we can obtain a fast decaying, robust blue-emitting silicate phosphor layer under excited plasma radiation for upcoming emissive display devices like as transparent and three-dimensional plasma display panels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.