Abstract

In this patent article, a novel bismuth tungstate/preoxidized acrylonitrile/ acrylic acid (AN/AA) copolymer composite nanofiber membrane was prepared, which was used as the visible light catalyst. AN/AA copolymer was synthesized, which was electrospun with bismuth nitrate and sodium tungstate to prepare the composite nanofiber. Then the composite nanofiber was preoxidized to prepare the bismuth tungstate/preoxidized AN/AA composite nanofiber membrane containing adsorption moiety and photocatalytic active moiety. The photocatalytic activity of bismuth tungstate/preoxidized AN/AA composite nanofiber membrane with different preoxidized temperature, heating rate, and holding time by catalytic degradation of methylene blue was investigated. The optimal preoxidized conditions were as follows: the preoxidized temperature was heated to 200 °C with the heating rate of 1°C/min and the holding time at this temperature was 12 h. The chemical structure and morphology of the composite nanofiber membrane were characterized by FTIR, XRD, and SEM. The bismuth tungstate/preoxidized AN/AA composite nanofiber membrane obtained good photocatalytic properties and reusability under visible light. The degradation rate of methylene blue by this visible light catalyst could reach 90.24% for 4.5 h, and the degradation rate remained 81.53% for 4.5 h after 5 reuses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call