Abstract

A morpholine alkaline basic ionic liquid (IL) 1-butyl-3-methyl morpholine hydroxide ([Hnmm]OH) was synthesized and characterized by 1H NMR and FT-IR. [Hnmm]OH is highly active in catalyzing the synthesis of biodiesel from the reaction of methanol with soybean oil. The influence of the reaction conditions, including the [Hnmm]OH catalyst amount, the molar ratio of methanol to soybean oil, reaction temperature and time, was investigated. Moreover, the pH and thermal stability of the catalyst was studied. The catalytic activity was affected by its alkalinity. The optimum reaction conditions were found as [Hnmm]OH amount of 4% (mass fraction), the methanol to soybean oil molar ratio of 8, temperature 70 °C and reaction time 1.5 h, the yield of Biodiesel reached 97.0%, and exhibits high stability upon recycling, the yield of Biodiesel is still more than 90% even after being reused for five times. A great advantage of using ILs is that it is very easy to separate the final products. After the reaction, a biphasic system was obtained. The top phase contains biodiesel and a little bit of methanol. Pure biodiesel can be isolated by vacuum evacuating the methanol. The bottom phase contains methanol, glycerol and ILs. Pure glycerol can be obtained simply by distillation. After distillation, pure ILs was obtained, which can be used directly for another reaction. The as prepared biodiesel shows very appealing properties.

Highlights

  • With the concerns over fossil fuels shortage, crude oil price increase and vehicle emissions, it is increasingly necessary to explore alternative clean and renewable energy sources

  • Biodiesel is produced by transesterification of triglycerides to afford lower molecular weight fatty acid monoalkyl esters and glycerol using vegetable oil or animal fat with methanol or alcohol in the presence of an appropriate catalyst [4,5,6]

  • There have been very few reports on the synthesis of biodiesel catalyzed by alkaline ionic liquid [19,20,21]

Read more

Summary

Introduction

With the concerns over fossil fuels shortage, crude oil price increase and vehicle emissions, it is increasingly necessary to explore alternative clean and renewable energy sources. Biodiesel, consisting of fatty acid methyl esters (FAME), as a promising non-toxic, biodegradable alternative fuel, has attracted significant attentions due to its unique and superior features. The synthetic strategies include physical, chemical and enzymatic methods. ILs have received much interest from various fields such as catalysis, separation, synthesis and electrochemistry because of its excellent properties such as negligible vapor pressure, low toxicity, high catalytic activity, excellent chemical and thermal stability, high conductivity, strong dissolution ability, potential recoverability, design possibilities [15,16,17,18]. There have been very few reports on the synthesis of biodiesel catalyzed by alkaline ionic liquid [19,20,21]. Synthesized alkaline ionic liquids [Bmim]OH, and studied its catalytic effect in the reaction of the synthesis of biodiesel.

Catalyst Characterization
The Basicity and the Thermal Stability of the Ionic Liquids
Effect of Reaction Temperature
Effect of Reaction Time
Comparative Study on the Catalytic Activities in Different Catalyst
Comparison of the Properties of the as Prepared Biodiesel with Specifications
Materials
Synthesis of Biodiesel
Preliminary Physical and Chemical Properties of Soybean Oil
The Determination of the Yield of Biodiesel
The Structure Analysis of Ionic Liquids
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.