Abstract
Polymeric nanoparticles have attracted growing attention because of their unique properties and extensive application. In this study, polycaprolactone (PCL) nanoparticles were prepared via double emulsion solvent evaporation-like process using power ultrasound, and the effects of various process parameters on particle size, zeta potential, and morphology were investigated and optimized. Nanoparticles (NPs) were prepared by two-step emulsification process. In the first step, the inner aqueous phase (W1) was homogenized with organic phase (PCL in dichloromethane) to obtain primary emulsion. In the second step, the primary emulsion was emulsified with outer aqueous phase (W2) containing polyvinyl alcohol (PVA) as stabilizer using power ultrasound, followed by evaporation of solvent which resulted in a particulate suspension at the end. Effects of various parameters like ultrasound exposure time and amplitude, outer aqueous phase volume, PVA concentration, and PCL content were investigated. It has been shown that, by increasing ultrasound exposure time, amplitude, and outer aqueous phase volume, the particle size decreases. Additionally, particle size was also related to amount of PCL and PVA concentration. Spherical NPs with smooth surfaces were observed by scanning electron microscopy (SEM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.