Abstract

Wound dressings with long-term antimicrobial activity are highly desired for treatment of chronic wound infections. Herein, the sustained antimicrobial wound dressings were developed by using antibiotic agents, ciprofloxacin HCL (CIP) and gentamicin sulfate (GS), covalent bonding to natural polymer matrix composites, carboxymethyl chitosan (CMC) and collagen (COL). By amide bond formation between antibiotic agents and polymer chains, two antimicrobial wound dressings CMC-COL-CIP and CMC-COL-GS were prepared. The presented wound dressings exhibited high water absorption capacity, excellent water vapor transmission rate (WVTR), appropriate mechanical properties, and impressive stability. Cytocompatibility of the dressings was demonstrated by in vitro human skin fibroblast (HSF) cells culture study. The results of in vitro and in vivo studies indicated that the two antimicrobial wound dressings have effective antimicrobial activity and prolonged antimicrobial period. Furthermore, the antimicrobial dressings could promote the wound healing, reepithelialization, collagen deposition, and angiogenesis. It also displays superiority wound healing effects compared to commercially available silver-based dressings (Aguacel Ag). This work indicates that the prepared antimicrobial wound dressings have great potential application in chronic wound healing, such as severe wound cure and diabetic foot ulcers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.